GENERAL INFORMATION FOR THE USE OF INTERNAL HUB TO SHAFT CONNECTIONS

$R_t \leq 16 \mu$						
 TAS 3003, 3006, 3012, 3015, RB Shaft: h 8 Bore: H 8 TAS 3020 Shaft: Every fit between h 11 and k 11 Bore: Every fit between H 11 and N 11 						
						μ = 0.12 for slightly oiled locking assembly $\mu_{\rm tot.}$ = 0.14 for locking screws
$M_1 \approx 9560 \cdot \frac{P}{n}$ (P in kW) [Nm] 1 kW = 1.36 HP						
$M_t \approx 7026 \cdot \frac{P}{n}$ (P in HP) [Nm] 1 HP = 0.736 kW						
$M_{t} = \mu \cdot N \cdot \frac{d}{2} \qquad N [N] d [m]$						
$N_{ax} = M_1 \cdot \frac{2}{d}$ N _{ax} [KN], if d [mm]						
$M_{R} = \sqrt{M_{t_{cat.}}^{2} - (N_{ax} \cdot \frac{d}{2})^{2}}$						
p_w and p_N have to be $\leq \mathcal{O}_{0.2}$						
M_t = transmissible torque						
M _R = reduced transmissible torque P = power						
n = shaft speed r.p.m.						
N = nominal force						
N _{ax} = axial force						
d = shaft diameter						
pw - contact pressure between locking assembly and shaft						
the standard management of the standard standard standards by the standard standards by the standard standard standards by the standard standard standard standards by the standard s						
p_N = contact pressure between locking assembly and hub bore $C_{0,2}$ = stress resulting in a permanent deformation of 0.2%						

070,2 [N/mm²]	150	180	200	220	250	270	300	350	400
Material	GG-22	GG-26 GS-38 V2A-S	GG-30 V2A-E V4A-S GTS-35	GS-45 St 35 St 37-3 V4A-E	GS-52 GGG-38 St 42-3 C 22	GGG-42 St 50-2 C 35 AlCuNiC	GS-60 St 60-2 St 55 GTS-45	GS-62 GGG-50 St 70-2 C 45	GS-70 GGG-60 C 60